TOWARDS SUSTAINABLE DEVELOPMENT IN PLATINUM GROUP METALS PRODUCTION:  ENVIRONMENTAL AND ECONOMIC PERSPECTIVES

Original article

Download article 

Alexey E. Cherepovitsyn1, Irina A. Mekerova2

1, 2Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russia

1alekseicherepov@inbox.ru, ORCID 0000-0003-0472-026X

2s245078@stud.spmi.ru, ORCID 0009-0000-5097-3992

Abstract. The relevance of this study lies in the critical role that platinum group metals (PGMs) play in the production of modern high-tech products, including automotive catalytic converters, oil refining catalysts, hydrogen fuel cells, and electronic components, and in jewelry production. These metals are increasingly important for advancing sustainable technologies and improving industrial process efficiency. However, their extraction and use pose major environmental challenges, particularly in sensitive regions such as the Arctic, where industrial development must be carefully balanced with the preservation of fragile ecosystems. The Russian Arctic, with its substantial PGM deposits, represents a strategically important territory for ensuring national resource independence and promoting sustainable development in the mining industry. This study aims to analyze promising directions for the development of the PGM market, focusing on efficient use, recycling, and integration into a green economy model. It seeks to identify key trends, technological opportunities, and mechanisms that support sustainable industry development, reduce environmental impacts, and establish closed-loop cycles for strategically important resources. To achieve these objectives, the study employs systems analysis and a comparative review of PGM production and processing regulations. The potential of secondary raw materials is also assessed in the context of growing resource scarcity. The scientific novelty of the study lies in its comprehensive examination of the relationship between green technology development and the need for stable PGM supplies, with particular emphasis on modernizing environmental regulations and establishing effective secondary recovery systems. The authors present conclusions highlighting the importance of strategic management in PGM production and markets, strengthening public policy to ensure sustainable development in the mining industry, and expanding the adoption of environmentally friendly technologies.

Keywords: platinum group metals, palladium, Arctic, automotive catalytic converters, sustainable development, environmental standards, recycling

For citation: Cherepovitsyn A. E., Mekerova I. A. Towards sustainable development in platinum group metals production: Environmental and economic perspectives. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2025, no. 4, pp. 104–121. doi:10.37614/2220-802X.4.2025.90.007.

References

  1. Galevskiy S., Qian H. Developing and validating comprehensive indicators to evaluate the economic efficiency of hydrogen energy investments. Operational Research in Engineering Sciences: Theory and Applications, 2024, No. 7, 188–207. https://doi.org/10.5281/zenodo.15093154.
  2. Semenova T., Sokolov I. Theoretical substantiation of risk assessment directions in the development of fields with hard-to-recover hydrocarbon reserves. Resources, 2025, 14 (4), pp. 64. https://doi.org/10.3390/resources14040064.
  3. Linh N. K., Dinh D. V., Gabov V. V., Phuc L. Q., Thang N. V. Enhancing the equipment adaptability for removing frame supports in the mine workings. Ugol, 2024, (9), pp. 81–86. DOI: 10.18796/0041-5790-2024-9-81-86.
  4. Marinina O. A., Ilyushin Y. V., Kildiushov E. V. Comprehensive analysis and forecasting of indicators of sustainable development of nuclear industry enterprises. International Journal of Engineering, 2025, 38 (11), pp. 2527–2536. https://doi: 10.5829/ije.2025.38.11b.05.
  5. Semenova T., Churrana N. Assessment of the projects’ prospects in the economic and technological development of the oil and gas complex in the Republic of Mozambique. Resources, 2025, 14, p. 106. https://doi.org/10.3390/resources14070106.
  6. Aleksandrova T. N., O’Connor C. Obrabotka rud platinovoi gruppy v Rossii i Yuzhnoi Afrike: sovremennoe sostoyanie i perspektivy [Processing of platinum group metal ores in Russia and South Africa: Current state and prospects]. Zapiski Gornogo instituta [Journal of Mining Institute], 2020, Vol. 244, pp. 462–473. https://doi.org/10.31897/PMI.2020.4.9. (In Russ.).
  7. Zheng H., Ding Y., Wen Q., Liu B., Zhang S. Separation and purification of platinum group metals from aqueous solution: Recent developments and industrial applications. Resources, Conservation and Recycling, 2021, 167, p. 105417. https://doi.org/10.1016/j.resconrec.2021.1054.
  8. Mudd G. M. Key trends in the resource sustainability of platinum group elements. Ore Geology Reviews, 2012, 46, 106–117. https://doi.org/10.1016/j.oregeorev.2012.02.005.
  9. Chicardi E., Lopez-Paneque A., García-Orta V. H. G., Sepúlveda-Ferrer R. E., Gallardo J. M. Enrichment methods for metal recovery from waste from electrical and electronic equipment: A brief review. Metals, 2025, 15 (2), p. 140. https://doi.org/10.3390/met15020140.
  10. Piermatti O. Green synthesis of Pd nanoparticles for sustainable and environmentally benign processes. Catalysts (Basel), 2021, 11 (11), p. 1258. https://doi.org/10.3390/catal11111258.
  1. Ayogu J. I., Elahi N., Zeinalipour-Yazdi C. D. Emerging trends in palladium nanoparticles: Sustainable approaches for enhanced cross-coupling catalysis. Catalysts, 2025, 15 (2), p. 181. https://doi.org/10.3390/catal15020181.
  2. Aksoy M., Kilic H., Nişancı B., Metin Ö. Recent advances in the development of palladium nanocatalysts for sustainable organic transformations. Inorganic Chemistry Frontiers, 2021, 8, pp. 499–545. https://doi.org/10.1039/D0QI01283A.
  3. Khan M., Kuniyil M., Shaik M. R., Khan M., Adil S. F., Al-Warthan A., Alkhathlan H. Z., Tremel W., Tahir M. N., Siddiqui M. R. H. Plant extract mediated eco-friendly synthesis of Pd@graphene nanocatalyst: An efficient and reusable catalyst for the Suzuki-Miyaura coupling. Catalysts, 2017, 7 (1), p. 20. https://doi.org/10.3390/catal7010020.
  4. McCarthy S., Braddock D. C., Wilton-Ely J. D. E. T. Strategies for sustainable palladium catalysis. Coordination Chemistry Reviews, 2021, 442, p. 213925. https://doi.org/10.1016/j.ccr.2021.213925.
  5. Alentiev D. A., Bermeshev M. V., Volkov A. V., Petrova I. V., Yaroslavtsev A. B. Palladium membrane applications in hydrogen energy and hydrogen-related processes. Polymers, 2025, 17, p. 743. https://doi.org/10.3390/polym17060743.
  6. Mordarski G., Skowron K., Duraczyńska D., Drabczyk A., Socha R. P. Development of a multi-bed catalytic heat generator utilizing a palladium-based hydrogen combustion system. Energies, 2025, 18 (6), p. 1348. https://doi.org/10.3390/en18061348.
  7. Palladium’s technological triumph: Applications range from AI to aerospace. Available at: https://tacticalinvestor.com/palladiums-technological-triumph/ (accessed 20.02.2025).
  8. Pashkevich M. A., Danilov A. S. Ekologicheskaya bezopasnost’ i ustoichivost’ [Ecological security and sustainability]. Zapiski Gornogo instituta [Journal of Mining Institute], 2023, Vol. 260, pp. 153–154. EDN ICGPGI. (In Russ.).
  9. Scientists have proposed a way to increase the efficiency of solar batteries. Available at: https://nauka.tass.ru/nauka/6562901?utm_source=yandex.ru&utm_medium=organic&utm_campaign=yandex.ru&utm_referrer=yandex.ru 07/18/2019 (accessed 17.02.2025).
  10. Kondratiev V. B. Mineral’nye resursy i budushchee Arktiki [Mineral resources and future of the Arctic]. Gornaya promyshlennost’ [Mining Industry], 2020, No. 1, pp. 87–96. DOI: 10.30686/1609-9192-2020-1-87-96. EDN OBRRTF. (In Russ.).
  11. Bortnikov N. S., Lobanov K. V., Volkov A. V., Galyamov A. L., Vikent’ev I. V., Tarasov N. N., Distler V. V., Lalomov A. V., Aristov V. V., Murashov K. Y., Chizhova I. A., Chefranov R. M. Mestorozhdeniya strategicheskikh metallov Arkticheskoi zony [Strategic metal deposits of the Arctic Zone]. Geologiya rudnykh mestorozhdenii [Geology of Ore Deposits], 2015, Vol. 57, No. 6, p. 479. DOI: 10.7868/S0016777015060027. EDN VCPJOX. (In Russ.).
  12. Opalev A. S., Marchevskaya V. V. Razrabotka innovatsionnykh tekhnologii obogashcheniya poleznykh iskopaemykh Arkticheskoi zony Rossii [Development of innovative technologies of ore mineral resources concentration from the Russian Arctic zone]. Gornaya promyshlennost’ [Mining Industry], 2023, No. 1, pp. 63–70. DOI: 10.30686/1609-9192-2023-1-63-70. EDN DKGKYG. (In Russ.).
  13. Korchak E. A., Skufina T. P., Korchak E. A. (Eds.). Sotsial’no-ekonomicheskaya dinamika i perspektivy razvitiya rossiiskoi Arktiki s uchetom geopoliticheskikh, makroekonomicheskikh, ekologicheskikh i mineral’no-syr’evykh faktorov [Socio-economic dynamics and development prospects of the Russian Arctic, taking into account geopolitical, macroeconomic, environmental and mineral resource factors]. Apatity, KSC RAS, 2021, 209 p. (In Russ.)
  14. Canhimbue L. S., Talovina I. V. Platinometall’noe orudenie Noril’skogo raiona: istoriya i perspektivy izucheniya [Platinum-metal mineralization of the Norilsk district: History and prospects of research]. Izvestiya Uralskogo gosudarstvennogo gornogo universiteta [News of the Ural State Mining University], 2022, No. 4 (68), pp. 56–63. DOI: 10.21440/2307-2091-2022-4-56-63. EDN MQNCXK. (In Russ.).
  15. Ruiu A., Li W. S. J., Senila M., Bouilhac C., Foix D., Bauer-Siebenlist B., Seaudeau-Pirouley K., Jänisch T., Böringer S., Lacroix-Desmazes P. Recovery of precious metals: A promising process using supercritical carbon dioxide and CO₂-soluble complexing polymers for palladium extraction from supported catalysts. Molecules, 2023, 28 (17), p. 6342. https://doi.org/10.3390/molecules28176342.
  16. Mir S., Dhawan N. A comprehensive review on the recycling of discarded printed circuit boards for resource recovery. Resources, Conservation and Recycling, 2021, 178, p. 106027. https://doi.org/10.1016/j.resconrec.2021.106027.
  17. Saidani M., Kendall A., Yannou B., Leroy Y., Cluzel F. Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators. Journal of Industrial Ecology, 2019. https://hal-02094798.
  18. Ilie S., Miuţescu A., Stoianovici M., Mitran G. Recovery of precious metals from catalytic converters of automobiles by hydrometallurgical solid-liquid extraction processes. Advanced Materials Research, 2013, 837, pp. 105–109. https://doi.org/10.4028/www.scientific.net/AMR.837.105.
  19. Hagelüken B. C. Recycling the platinum group metals: A European perspective. Platinum Metals Review, 2012, 56 (1), 29–35. https://doi.org/10.1595/147106712×611733.
  20. Mudd G. M., Glaister B. J. The environmental costs of platinum-PGM mining: An excellent case study in sustainable mining. Proceedings of the 48th Annual Conference of Metallurgists. Canadian Institute of Mining, Metallurgy and Petroleum, 2009.
  21. Choi J.-S., Kočí P. Automotive emission control catalysts. Catalysts (Basel), 2016, 6 (10), p. 155. https://doi.org/10.3390/catal6100155.
  22. Nguyen M. P., Ponomarenko T. State incentives for solar energy in the context of energy transition in developed and developing countries. Energies, 2025, 18 (5), p. 1227. https://doi.org/10.3390/en18051227.
  1. Pashkevich N. V., Khloponina V. S., Pozdnyakov N. A., Avericheva A. A. Analiz problem vosproizvodstva mineral’no-syr’evoi bazy defitsitnykh strategicheskikh poleznykh iskopaemykh [Analysing the problems of reproducing the mineral resource base of scarce strategic minerals]. Zapiski Gornogo instituta [Journal of Mining Institute], 2024, 270, 1004–1023. EDN HNTQBF. https://doi.org/10.31897/PMI.2024.27. (In Russ.).
  2. Nevskaya M. A., Belyaev V. V., Pasternak S. N., Vinogradova V. V., Shagidulina D. I. Otsenka potentsial’nogo ushcherba pochvam ot avariinykh razlivov nefti i nefteproduktov na territorii Arkticheskogo regiona [Accidental oil spills in the Arctic: An assessment of potential soil damage]. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2024, No. 3, pp. 107–122. DOI: 10.37614/2220-802X.3.2024.85.007. (In Russ.).
  3. Doan D. B., Bond A. R. Russia’s platinum-group metals: A current survey. International Geology Review, 1994, 36 (1), 92–100. https://doi.org/10.1080/00206819409465451.
  4. Kohnert D. Prospects and challenges for EU rare earth imports from Russia: The case of Germany, France and Italy, 2024.
  5. Ruiu A., Bauer-Siebenlist B., Senila M., Li W. S. J., Seaudeau-Pirouley K., Lacroix-Desmazes P., Jänisch T. Supercritical CO₂ extraction of palladium oxide from an aluminosilicate-supported catalyst enhanced by a combination of complexing polymers and piperidine. Molecules, 2021, 26 (3), p. 684. https://doi.org/10.3390/molecules26030684.
  6. Mudd G. M., Jowitt S. M., Werner T. T. Global platinum group element resources, reserves and mining—A critical Science of the Total Environment, 2018, pp. 622–623, 614–625. https://doi.org/10.1016/j.scitotenv.2017.11.350.
  7. Sandig-Predzymirska L., Barreiros T. V., Thiere A., Weigelt A., Vogt D., Stelter M., Charitos A. Recycling strategy for the extraction of PGMs from spent PEM electrodes. Recycalyse EU, 2021. https://recycalyse.eu/wp-content/uploads/Paper-Sandig-Predzymirska-Lesia.pdf.
  8. Litvinenko V. S., Tsvetkov P. S., Dvoynikov M. V., Buslaev G. V. Bar’ery realizatsii vodorodnykh initsiativ v kontekste ustoichivogo razvitiya global’noi energetiki [Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development]. Zapiski Gornogo instituta [Journal of Mining Institute], 2020, 244, pp. 428–438. https://doi.org/10.31897/PMI.2020.4.5. (In Russ.)
  9. The European Union’s ban on the sale of new petrol and diesel cars from 2035 explained. Available at: https://www.europarl.europa.eu/topics/en/article/20221019STO44572/eu-ban-on-sale-of-new-petrol-and-diesel-cars-from-2035-explained (accessed 17.02.2025).
  10. Appendix No. 2. Target indicators for the implementation of the Strategy for the Development of the Automotive Industry of the Russian Federation until 2035. Available at: http://government.ru/docs/all/145481/ (accessed 10.02.2025).
  11. Dyantyi-Gwanya N., Giwa S. O., Ncanywa T., Taziwa R. T. Exploring economic expansion of green hydrogen production in South Africa. Sustainability, 2025, 17 (3), p. 901. https://doi.org/10.3390/su17030901.
  12. Grilli M. L., Slobozeanu A. E., Larosa C., Paneva D., Yakoumis I., Cherkezova-Zheleva Z. Platinum group metals: Green recovery from spent auto-catalysts and reuse in new catalysts—A review. Crystals, 2023, 13 (4), p. 550. https://doi.org/10.3390/cryst13040550.
  13. Kolliopoulos G., Balomenos E., Giannopoulou I., Yakoumis I., Panias D. Behavior of platinum group metals during their pyrometallurgical recovery from spent automotive catalysts. Open Access Library Journal, 2014, 1, e736. https://doi.org/10.4236/oalib.1100736.
  14. Dmitrieva D., Solovyova V. Taxonomy of projects for the development of mineral resources in the Arctic: A path to sustainable financing? Sustainability, 2024, 16 (11), 4867. https://doi.org/10.3390/su16114867.
  15. Vasilev Yu. N., Tsvetkova A. Y., Bykowa E. N. Issledovanie rasprostranennosti v sotsial’nykh setyakh informatsii o proektakh ulavlivaniya i zakhoroneniya uglekislogo gaza [Social media prevalence study of information about carbon dioxide capture and storage projects]. Vestnik Universiteta [University Bulletin], 2023, 2, pp. 101–109. https://doi.org/10.26425/1816-4277-2023-2-101-109. (In Russ.).
  16. Dmitrieva D., Chanysheva A., Solovyova V. A conceptual model for the sustainable development of the Arctic’s mineral resources considering current global trends: Future scenarios, key actors, and recommendations. Resources, 2023, 12, No. 6. DOI: 10.3390/resources12060063.
  17. Komendantova N. Transferring awareness into action: A meta-analysis of the behavioral drivers of energy transitions in Germany, Austria, Finland, Morocco, Jordan and Iran. Energy Research & Social Science, 2021, Vol. 71, Art. 101826. https://doi.org/10.1016/j.erss.2020.101826.
  18. The Federal State Statistics Service (Rosstat). Emissions of the most common air pollutants from stationary and mobile sources. Available at: http://rosstat.gov.ru/ (accessed 10.02.2025).
  19. Bardi U., Caporali S. Precious metals in automotive technology: An unsolvable depletion problem? Minerals (Basel), 2014, 4 (2), pp. 388–398. https://doi.org/10.3390/min4020388.
  20. Yakoumis I., Moschovi A., Panou M., Panias D. Single-step hydrometallurgical method for the platinum group metals leaching from commercial spent automotive catalysts. Journal of Sustainable Metallurgy, 2020, 6, pp. 549–558. https://doi.org/10.1007/s40831-020-00272-9.
  21. Carbon dioxide (CO₂) emissions from cars and vans worldwide from 2010 to 2022. Available at: https://www.statista.com/statistics/1388092/carbon-dioxide-emissions-cars-vans-transport/ (accessed 14.02.2025).
  1. Ishin L. A., Cherepovitsyn A. E., Lebedev A. P. Preimushchestva i nedostatki ekonomiki zamknutogo tsikla: put’ k ekologicheski chistomu proizvodstvu [Advantages and disadvantages of a closed-loop economy: The path to environmentally friendly production]. Vestnik Samarskogo universiteta. Ekonomika i upravlenie [Bulletin of Samara University. Economics and Management], 2024, 15 (3), pp. 135–153. https://doi.org/10.18287/2542-0461-2024-15-3-135-153. (In Russ.).
  2. Sheveleva N. A. Razrabotka i validatsiya podkhoda k ekolоgо-ekonomicheskoi otsenke proektov dekarbonizatsii v neftegazovoi otrasli [Development and validation of an approach to the environmental and economic assessment of decarbonization projects in the oil and gas sector]. Zapiski Gornogo instituta [Journal of Mining Institute], 2024, 270,   1038–1055. EDN GAOTZW. https://doi.org/10.31897/PMI.2024.27. (In Russ.).
  3. Holdsworth A., Eccles H., Sharrad C., George K. Spent nuclear fuel—waste or resource? The potential of strategic materials recovery during recycle for sustainability and advanced waste management. Waste, 2023, 1 (1), pp. 249–263. https://doi.org/10.3390/waste1010016.
  4. Ponomarenko T. V., Nevskaya M. A., Jonek-Kowalska I. Mineral resource depletion assessment: Alternatives, problems, results. Sustainability, 2021, Vol. 13, No. 2, Art. 862. https://doi.org/10.3390/su13020862.
  5. Mallampati S. R., Lee B. H., Mitoma Y., Simion C. Sustainable recovery of precious metals from end-of-life vehicles shredder residue by a novel hybrid ball-milling and nanoparticles enabled froth flotation process. Journal of Cleaner Production, 2018, 171, pp. 66–75. https://doi.org/10.1016/j.jclepro.2017.09.279.
  6. Hughes A. E., Haque N., Northey S. A., Giddey S. Platinum group metals: A review of resources, production and usage with a focus on catalysts. Resources, 2021, 10 (9), p. 93. https://doi.org/10.3390/resources10090093.
  7. Hagelüken C., Goldmann D. Recycling and circular economy—towards a closed loop for metals in emerging clean technologies. Mineral Economics, 2022, 35, pp. 539–562. https://doi.org/10.1007/s13563-022-00319-1.
  8. Ilinova A. A., Romasheva N. V., Stroykov G. A. Perspektivy i sotsial’nye effekty proektov sekvestratsii i utilizatsii uglekislogo gaza [Prospects and social effects of carbon dioxide sequestration and utilization projects]. Zapiski Gornogo instituta [Journal of Mining Institute], 2020, Vol. 244, pp. 493–502. https://doi.org/10.31897/PMI.2020.4.12. (In Russ.).
  9. Marinina O., Nechitailo A., Stroykov G., Tsvetkova A., Reshneva E., Turovskaya L. Technical and economic assessment of energy efficiency of electrification of hydrocarbon production facilities in underdeveloped areas. Sustainability, 2023, 15, p. 9614. https://doi.org/10.3390/su15129614.
  10. Işıldar A., Rene E. R., Van Hullebusch E. D., Lens P. N. L. Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resources, Conservation and Recycling, 2018, 135, pp. 296–312. https://doi.org/10.1016/j.resconrec.2017.07.031.
  11. Zion Market Research. WEEE (Waste electrical and electronic equipment) recycling market by type (electrical equipment and electronic equipment), by application (energy power, metal smelting, chemical extraction, and environmental protection), and by region—global and regional industry overview, market intelligence, comprehensive analysis, historical data, and forecasts 2024–2032. Available at: https://www.zionmarketresearch.com/report/weee-waste-electrical-electronic-equipment-recycling-market (accessed 14.02.2025).
  12. The Global E-waste Monitor 2024. Available at: https://globalewaste.org/ (accessed 14.02.2025).
  13. Saffaj S., Mantovani D., Kolliopoulos G. Sustainable leaching of Cu, Ni, and Au from waste printed circuit boards using choline chloride-based deep eutectic solvents. Metals, 2025, 15 (1), p. 82. https://doi.org/10.3390/met15010082.
  14. Burat F., Dinç N. I., Dursun H. N., Ulusoy U. The role of particle size and shape on the recovery of copper from different electrical and electronic equipment waste. Minerals (Basel), 2023, 13 (7), p. 847. https://doi.org/10.3390/min13070847.
  15. International Energy Agency. Global EV Outlook 2024. Available at: https://www.iea.org/reports/global-ev-outlook-2024 (accessed 20.02.2025).
  16. Johnson Matthey. (2024). PGM Market Report—May 2024. Available at: https://matthey.com/products-and-markets/pgms-and-circularity/pgm-markets/pgm-market-reports (accessed 15.02.2025).