ANALYSIS OF THE ARCTIC’S TECHNOLOGICAL DEVELOPMENT BASED  ON SEMANTIC ATTRIBUTE GRAPHS AND MULTI-CRITERIA ATTENTION

Original article

Download article 

Sergey K. Antipov1, Alexey V. Beloshitsky2, Alissa S. Dubgorn3, Igor V. Ilyin4, Anastasia I. Levina5

1, 3, 4, 5Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

2Ufa State Petroleum Technological University, Ufa, Russia

1antipov_sk@spbstu.ru, ORCID 0000-0001-7593-9483

2bel@bngf.ru, ORCID 0000-0001-6586-3884

3dubgorn@spbstu.ru, ORCID 0000-0002-5012-0831

4igor.ilin@spbstu.ru, ORCID 0000-0003-2981-0624

5levina_ai@spbstu.ru, ORCID 0000-0002-4822-6768

 

Abstract. The technological development of the Russian Arctic is a key factor in ensuring national security, enabling the sustainable exploration of natural resources, and strengthening sovereignty in the face of extreme climatic and geographic challenges. Despite significant public investment, the effectiveness of federal programs remains insufficiently understood, and their impact on technological outcomes is poorly quantified. Existing approaches based on aggregate indices and expert assessments fail to identify which initiatives drive technological transformation or why some regions demonstrate high levels of innovation while others do not. This study aims to develop an interpretable model capable of identifying cause-and-effect relationships between federal programs and technological development indicators. Its novelty lies in the proposal of a new model, MASGN-TT—a semantic graph neural network approach with a multicriteria attention mechanism, applied for the first time in the Russian context to analyze the technological development of the Arctic. The model not only measures program impacts but also visualizes their influence on specific technological domains, ranging from digital infrastructure to environmental monitoring. The results show that two key public policy areas—digital transformation and environmental monitoring—are the dominant drivers of technological growth, while other programs, despite considerable budget allocations, yield limited returns. The analysis also points to a persistent gap between workforce preparation and tangible results. More broadly, the effectiveness of technological development in the Arctic is shaped less by the volume of funding than by how programs are structured and where their efforts are directed. The proposed model provides a tool for evidence-based evaluation of public programs, ensuring transparency, replicability, and adaptability to managerial decision-making. This paves the way for a targeted technological development policy aimed at maximizing systemic impact.

Keywords: technological development, Russian Arctic, federal programs, attention mechanism, interpretable AI

Acknowledgments: This study was funded by the Russian Science Foundation, grant No. 23-78-10190, https://rscf.ru/project/23-78-10190/.

For citation: Antipov S. K., Beloshitsky A. V., Dubgorn A. S., Ilyin I. V., Levina A. I. Analysis of the Arctic’s technological development based on semantic attribute graphs and multi-criteria attention. Sever i rynok: formirovanie ekonomicheskogo poryadka  [The North and the Market: Forming the Economic Order], 2025, no. 4, pp. 182–192. doi:10.37614/2220-802X.4.2025.90.012.

References

  1. Ukaz Prezidenta Rossiiskoi Federatsii ot 26.10.2020 № 645 “Strategiya razvitiya Arkticheskoi zony Rossiiskoi Federatsii i obespecheniya natsional’noi bezopasnosti na period do 2035 goda” [Decree of the President of the Russian Federation of October 26, 2020 No. 645 “On the Strategy for the Development of the Arctic Zone of the Russian Federation and Ensuring National Security for the Period up to 2035”]. (In Russ.). Available at: http://publication.pravo.gov.ru/ (accessed 10.11.2025).
  2. Antipov S. K., Sosnina M. N., Almazova-Ilyina A. B., Tokareva E. U. Developing the model of the innovative economy of Russian regions in the Arctic. IOP Conference Series: Earth and Environmental Science, 2019, Vol. 302, 1, pp. 12089.
  3. Dronova I., Kislik C., Dinh Z., Kelly M. A review of unoccupied aerial vehicle use in wetland applications: Emerging opportunities in approach, technology, and data. Drones, 2021, Vol. 5, No. 45.
  4. Zamyatina N., Goncharov R. Arctic urbanization: Resilience in a condition of permanent instability — the case of Russian Arctic cities. Resilience and Urban Disasters, 2019, pp. 136–153.
  5. Tishkov S. V., Egorov N. E., Volkov A. D., Kovrov G. S. Innovatsionnyi potentsial regionov Arkticheskoi zony Rossiiskoi Federatsii: sostoyanie i prostranstvennaya differentsiatsiya [Innovative potential of the regions in the Russian Arctic zone: State and spatial differentiation]. Arktika i Sever [Arctic and North], 2024, No. 55, pp. 24–39. (In Russ.).
  6. Il’in I. V., Lyovina A. I., Borremans A. D., Kalyazina S. E. Meta-model’ arkhitektury predpriyatiya v tsifrovuyu epokhu [Enterprise architecture meta-model in digital era]. Nauka i biznes: puti razvitiya [Science and Business: Development Ways], 2020, No. 3, pp. 36–40. (In Russ.).
  7. Sergeev V., Ilin I. V., Fadeev A. M. Transport and logistics infrastructure of the Arctic zone of Russia. Transportation Research Procedia, 2021, Vol. 54, pp. 936–944.
  8. Didenko N. I., Skripnyuk D. F. Modelirovanie ustoichivogo sotsial’no-ekonomicheskogo razvitiya regionov arkticheskogo prostranstva RF s ispol’zovaniem sistemy ekonometricheskikh uravnenii [Modelling of sustainable social and economic development of the Arctic regions of Russia with the use of the econometric equations system]. Strategicheskie prioritety razvitiya rossiiskoi Arktiki [Strategic Priorities in the Development of the Russian Arctic], 2014, pp. 63–77. (In Russ.).
  9. Tyaglov S. G., Ponomareva M. A. Sovremennye podkhody k formirovaniyu sistemy indikatorov ustoichivogo razvitiya regiona [Modern approaches to the formation of a system of indicators for sustainable development of a region]. Vestnik REA im. G. V. Plekhanova [Vestnik of the Plekhanov Russian University of Economics], 2013, Vol. 60, no. 6. (In Russ.).
  10. Rudenko L. G., Egorova N. N. Metodologicheskii podkhod k otsenke urovnya ustoichivogo razvitiya regionov [Methodological approach to assessing the level of sustainable development of regions]. Vestnik Moskovskogo universiteta imeni S. Yu. Vitte. Seriya 1: Ekonomika i upravlenie [Bulletin of Moscow Witte University. Series 1: Economics and Management], 2022, Vol. 43, No. 4. (In Russ.).
  11. Bakaev A. A., Sakharova S. M. Otsenka effektivnosti gosudarstvennogo upravleniya sotsial’no-ekonomicheskim razvitiem Arkticheskoi zony Rossiiskoi Federatsii na osnove sistemy sbalansirovannykh pokazatelei [Assessment of the state management effectiveness of socio-economic development of the Arctic Zone of the Russian Federation based on a system of balanced indicators]. Srednerusskii vestnik obshchestvennykh nauk [Central Russian Journal of Social Sciences], 2024, Vol. 19, No. 1, pp. 150–171. (In Russ.).
  12. Didenko N. I., Skripnyuk D. F., Cherenkov V. I., Tanichev A. V. Klyuchi k ustoichivomu razvitiyu Arkticheskoi zony Rossiiskoi Federatsii: model’ tsirkulyarnoi ekonomiki i logisticheskaya infrastruktura [Keys to sustainable development of the Arctic Zone of the Russian Federation: Model of circular economy and logistic infrastructure]. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2020, Vol. 70, No. 4, pp. 5–20. (In Russ.).
  13. Karlin L. N., Abramov V. M., Gogoberidze G. G., Aleksandrova L. V., Popov N. N. K voprosu o strategii sozdaniya natsional’noi sistemy kontrolya chernogo ugleroda v rossiiskoi Arktike [On the strategy for the development of the national system for black carbon control in the Russian Arctic]. Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta [Bulletin of the Russian State Hydrometeorological University], 2014, No. 36, pp. 67–73. (In Russ.).
  14. Tsukerman V. A., Goryachevskaya E. A. Innovatsionnyi potentsial Arkticheskikh regionov Rossii [Innovation potential of the Arctic regions of Russia]. Arktika i Sever [Arctic and North], 2022, No. 49, pp. 70–85. (In Russ.).
  15. Fadeev A. M., Ilin I. V., Lyovina A. I., Dubgorn A. S., Rukina P. A. Tsifrovizatsiya kak faktor razvitiya tselevykh arkticheskikh subprostranstv [Digitalization as a factor for development of the target Arctic subspaces]. Arktika i Sever [Arctic and North], 2025, No. 58, pp. 84–101. (In Russ.).
  16. Skobelev D. O., Fedoseev S. V. Ustoichivoe razvitie i povyshenie konkurentosposobnosti promyshlennosti v Barentsevom evro-arkticheskom regione [Sustainable development and increasing the competitiveness of industrial enterprises in the Barents Euro-Arctic Region]. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2021, Vol. 24, No. 2 (72). pp. 7–19. (In Russ.).
  17. Tukkel I. L., Egorov N. E., Detter G. F., Kovrov G. S. Otsenka innovatsionnogo razvitiya regionov Arkticheskoi zony Rossiiskoi Federatsii [Assessment of innovative development of regions of the Arctic zone of the Russian Federation]. π-Economy, 2017, No. 4, pp. 60–71. (In Russ.).
  18. Andreeva A. A., Akhmadulina T. V. Perspektivy razvitiya arkticheskikh regionov Rossii v usloviyakh tsifrovizatsii [Prospects for the development of the Arctic regions of Russia in the context of digitalization]. Vestnik UMTs [Bulletin of the University of World Civilizations], 2022, No. 4 (37), pp. 85–89. (In Russ.).
  19. Tsvetkov V. A., Dudin M. N., Yuryeva A. A. Strategicheskoe razvitie arkticheskogo regiona v usloviyakh bol’shikh vyzovov i ugroz [Strategic development of the Arctic region in the context of great challenges and threats]. Ekonomika regiona [Economy of Region], 2020, Vol. 16, No. 3, pp. 681–695. (In Russ.).
  20. Wei H., Xu N., Zhang H., Zheng G., Zang X., Chen C., Zhang W., Zhu Y., Xu K., Li Z. CoLight: Learning network-level cooperation for traffic signal control. Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM ’19), 2019, pp. 1913–1922.
  21. Ribeiro M. T., Singh S., Guestrin C. “Why should I trust you?”: Explaining the predictions of any classifier. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, 2016, 97–101.
  22. Wang L., Xiong Y., Wang Z., Qiao Y., Lin D., Tang X., Gool L. V. Temporal segment networks: Towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision—ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, 2016, Vol. 9912. Springer, Cham.