Original article
Diana M. Dmitrieva1, Dmitry O. Skobelev2
1Luzin Institute for Economic Studies of the Kola Science Centre of the Russian Academy of Sciences, Apatity, Russia, Diana-dmitrieva@mail.ru, ORCID 0000-0002-4208-4842
2Environmental Industrial Policy Centre, Mytishchi, Russia, ORCID 0000-0002-8067-7016
Abstract. Nowadays, the social and economic development of both individual countries and the world as a whole is facing a large number of external challenges. One of the key issues today is the achievement of sustainable development while managing the growth in resource consumption. Balancing energy supply with the pressing climate agenda has garnered global attention, particularly within the fuel and energy sector, which is the central pillar of energy supply and will remain so in the near future. In this regard, it is vital to determine its role in ensuring sustainable development and design mechanisms for transformation and adaptation to modern challenges. This issue is particularly acute for both functioning businesses and strategic oil and gas projects to be implemented in the Arctic. The purpose of this article is to study existing methods and potential decarbonization scenarios to determine their applicability within the industry in the context of ensuring the sustainable development of Russia’s Arctic. The article analyzes various scientific and technological approaches to decarbonization in light of the adoption of the Paris Agreement in 2015, which aims to reduce greenhouse gas emissions. The study investigates the causes of greenhouse gas emissions at each stage of oil and gas operations and proposes a mechanism for choosing decarbonization options. It critically examines global experiences and potential scenarios for reducing greenhouse gas emissions by oil and gas companies in the framework of sustainable development, identifying key trends and problems in this area. The study also presents possible decarbonization scenarios for the Arctic region, including carbon capture and storage (CCS) scenarios, renewable energy scenarios (utilizing renewable energy sources), and technological scenarios (upgrading existing technologies). The findings of this study can inform the development of strategies aimed at achieving carbon neutrality at various levels.
Keywords: sustainable development, decarbonization, Arctic region, oil and gas industry
Acknowledgments: this study was supported by a grant from the Russian Science Foundation (Project No. 22-78-10181 titled “Decarbonization of the Russian Oil and Gas Sector: Concept, New Interfaces, Challenges, Technological, Organizational, and Managerial Transformations”, https://rscf.ru/project/22-78-10181/.
For citation: Dmitrieva D. M., Skobelev D. O. Decarbonization of the oil and gas sector in the context of sustainable development: Key directions and possible scenarios for the Arctic region. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2023, no. 2, pp. 7–23. doi:10.37614/2220-802X.2.2023.80.001.
References
- Lee Ch.-Ch., Hussain J. Carbon neutral sustainability and green development during energy consumption. Innovation and Green Development, 2022, vol. 1 (1), 100002. DOI: 10.1016/j.igd.2022.100002.
- Akaev A. A., Rudskoy A. I., Korablev V. V., Sarygulov A. I. Tekhnologicheskie i ekonomicheskie bar’ery rosta vodorodnoi energetiki [Technological and economic barriers to the growth of hydrogen energy]. Bulletin of the Russian Academy of Sciences, 2022, vol. 92 (12), pp. 1133–1144.
- Danilin K. P. Metodologicheskii podkhod k otsenke kontseptsii energeticheskogo perekhoda dlya formirovaniya regional’noi energeticheskoi politiki [Methodological approach to the energy transition concept assessment for the regional energy policy formation]. Fundamental’nye issledovaniya [Fundamental research], 2022, no. 7, 122–127. (In Russ.)
- Lebedeva M. A. Problemy dekarbonizatsii ekonomiki Rossii [Decarbonization problems of the Russian economy]. Problems of Territory’s Development [Economy and nature], 2022, vol. 26 (2). (In Russ.). DOI: 10.15838/ptd.2022.2.118.5.
- Ilyinsky A. A., Kalinina O. V., Khasanov M. M., Afanasiev M. V., Saitova A. A. Dekarbonizatsiya neftegazovogo kompleksa: prioritety i organizatsionnye modeli razvitiya [Decarbonization of the oil and gas complex: priorities and organizational models of development]. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2022, no. 1, pp. 33–46. DOI:10.37614/2220-802X.1.2022.75.003.
- Global Energy and Climate Data — Yearbook 2022. (In Russ.). Available at: https://energystats.enerdata.net/ co2/emissions-co2-data-from-fuel-combustion.html (accessed 15 December 2022).
- BP Statistical Review of World Energy 2022. Available at: https://www.bp.com/content/dam/ bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf?ysclid= levb00fba7118327712 (accessed 21 January 2023).
- Greenhouse Gas Emissions from Energy Data Explorer — Data Tools — IEA. Available at: https://www.iea.org/data-and-statistics/data-tools/greenhouse-gas-emissions-from-energy-data-explorer (accessed 16 February 2023).
- Bui M., Adjiman C. S., Bardow A., Anthony E. J., Boston A., Brown S., Fennell P. S., Fuss S., Galindo A., Hackett L. A., Hallett J. P., Herzog H. J., Jackson G., Kemper J., Krevor S., Maitland G. C., Matuszewski M., Metcalfe I. S., Petit C., Puxty G., Reimer J., Reiner D. M., Rubin E. S., Scott S. A., Shah N., Smit B., Trusler J. P. M., Webley P., Wilcoxx J., Mac Dowellet N. Carbon capture and storage (CCS): the way forward. Energy and Environmental Science, 2018, 11 (5), pp. 1062–1176. DOI: 10.1039/C7EE02342A.
- Rissmana J., Bataille C., Masanet E., Aden N., Morrow W. R., Zhou N., Elliott N., Dell R., Heeren N., Huckestein B., Cresko J., Miller S. A., Roy J., Fennell P., Cremmins B., Koch Blank T., Hone D., Williams E. D., de la Rue du Can S., Sisson B., Williams M., Katzenberger J., Burtraw D., Sethi G., Ping H., Danielson D., Lu H., Lorber T., Dinkel J., Helseth J. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied Energy, 2020, vol. 266, 114848. DOI: 10.1016/j.apenergy.2020.114848.
- Romasheva N., Ilinova A. CCS projects: How regulatory framework influences their deployment. Resources, 2019, vol. 8 (4), 181. DOI: 10.3390/RESOURCES8040181.
- Saitova A. A., Ilyinsky A. A., Fadeev A. M. Stsenarii razvitiya neftegazovykh kompanii Rossii v usloviyakh mezhdunarodnykh ekonomicheskikh sanktsii i dekarbonizatsii energetiki [Scenarios for the development of oil and gas companies in Russia in the context of international economic sanctions and the decarbonization of the energy sector]. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2022, no. 3, pp. 134–143. DOI: 10.37614/2220-802X.3.2022.77.009.
- Ilinova A., Dmitrieva D. Strategic development of the Russian arctic: Socioecological approach. In International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 2017, Аlbena, Bulgaria, 29 June – 05 July 2017; STEF92 Technology Ltd.: Sofia, Bulgaria; Volume 17(52); pp. 851–858. DOI:10.5593/sgem2017/52/S20.109.
- Gazogidraty: novye vozmozhnosti dlya energosnabzheniya [Gas hydrates: new opportunities for energy supply]. (In Russ.). Available at: https://ru.arctic.ru/analitic/20151126/238271.html?ysclid=levhh09w5k368226780 (accessed 15 January 2023).
- 2020 Arctic Report Card: Climate.gov visual highlights. Available at: https://www.climate.gov/news-features/understanding-climate/2020-arctic-report-card-climategov-visual-highlights (accessed 06 February 2023).
- Gritsenko D., Efimova E. Is there Arctic resource curse? Evidence from the Russian Arctic regions. Resource Policy, 2020, vol. 65, 101547. DOI: 10.1016/j. resourpol.2019.101547.
- Shapovalova D., Galimullin E., Grushevenko E. Russian Arctic offshore petroleum governance: The effects of western sanctions and outlook for northern development. Energy Policy, 2020, vol. 146, 111753. DOI: 10.1016/j.enpol.2020.111753.
- Sidortsov R. Benefits over risks: a case study of government support of energy development in the Russian north. Energy Policy, 2019, vol. 129, pp. 132–138. DOI: 10.1016/j.enpol.2019.01.067.
- Usman M., Jahanger A., Makhdum M. S. A., Balsalobre-Lorente D., Bashir A. How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy, 2022, vol. 241, 122515. DOI: 10.1016/j.energy.2021.122515.
- Decarbonizing Development: Three Steps to a Zero-Carbon Future. Available at: https://www.uncclearn.org/wp-content/uploads/library/wb13052015.pdf (accessed 31 January 2023).
- Glebova A. G., Daneeva Yu. O. Dekarbonizatsiya mirovoi ekonomiki: energeticheskii sektor [Decarbonization of the world economy: energy sector]. Finansovyi biznes [Financial business], 2021, vol. 5 (215), pp. 26–31. (In Russ.).
- Wang Y. What drives sustainable development? Evaluating the role of oil and coal resources for selected resource rich economies. Resources Policy, 2023, vol. 80, 103078. DOI: 10.1016/j.resourpol.2022.103078.
- Ivanov A. V., Strizhenok A. V., Vorobey R. Y. Reduction of gas and aerosol pollution of atmospheric air at a condensate stabilization units. IOP Conference Series: Earth and Environmental Science, 2020, vol. 839 (4), 042036. DOI: 10.1088/1755-1315/839/4/042036.
- Ivanov A. V., Strizhenok A.V., Suprun I. K. Ecological and economic justification of the utilization of associated petroleum gas at oil fields of Russian Federation. Geologiya i Geofizika Yuga Rossii, 2020, vol. 10 (1), pp. 114–126. DOI: 123671/VNC.2020.1.59069.
- Glebova A. G., Daneeva Yu. O. Adaptatsiya rossiiskoi energetiki k dekarbonizatsii mirovoi ekonomiki [Adaptation of the Russian energy sector to the decarbonization of the world economy]. Nalogi. Pravo [Economics. Taxes. Law], 2021, vol. 14 (4), pp. 48–55. (In Russ.).
- Danilin K. P. Vliyanie energeticheskogo perekhoda na transformatsiyu ekonomicheskikh system [The influence of the energy transition on the transformation of economic systems]. Upravlenie razvitiem ekonomicheskikh sistem. Sbornik nauchnykh trudov Vserossiiskoi nauchno-prakticheskoi konferentsii (Sankt-Peterburg, 14–15 dekabrya 2022 g.) [Management of the development of economic systems. Collection of scientific papers of the All-Russian Science-to-Practice Conference (St. Petersburg, December 14–15, 2022)]. Saint Petersburg, Publishing and Printing Association of Higher Educational Institutions, 2022, pp. 58–62. (In Russ.)
- Dekarbonizatsiya neftegazovoi otrasli: mezhdunarodnyi opyt i prioritety Rossii [Decarbonization of the Oil and Gas Industry: International Experience and Russia’s Priorities]. (In Russ.). Available at: https://energy.skolkovo.ru/downloads/documents/SEneC/Research/SKOLKOVO_EneC_Decarbonization_of_oil_and_gas_RU_22032021.pdf (accessed 08 December 2022).
- Sheveleva N. A. Directions and methods of decarbonization of the oil and gas sector. Environmental protection in oil and gas complex, 2023, no. 2 (311), pp. 25–31. (In Russ.). DOI: 10.33285/2411-7013-2023-2(311)-25-31.
- Vetrova M. A., Bogdanova A.A., Yarullina I. E. Dekarbonizatsiya neftegazovoi otrasli v usloviyakh razvitiya tsirkulyarnoi ekonomiki [Decarbonization of the oil and gas industry in the context of the development of a circular economy]. Problemy sovremennoi ekonomiki [Problems of modern economics], 2021, no. 3 (79), pp. 196–199. (In Russ.).
- Skobelev D. O., Cherepovitsyna A. A., Guseva T. V. Tekhnologii sekvestratsii uglekislogo gaza: rol’ v dostizhenii uglerodnoi neitral’nosti i podkhody k otsenke zatrat [Carbon capture and storage: net zero contribution and cost estimation approaches]. Journal of Mining Institute, 2023, vol. 259, pp. 125–140. DOI: 10.31897/PMI.2023.10.
- Cheng C., Hekuan L., Zhengmeng H., Faisal M., Jianxing L., Wentao F. A review of CO2 storage in view of safety and cost-effectiveness. Energies, 2020, vol. 13 (3), 600. DOI: 10.3390/en13030600.
- Vo T. H., Yuichi S., Kyuro S. Application of artificial neural network for predicting the performance of CO2 enhanced oil recovery and storage in residual oil zones. Scientific Reports, 2020, vol. 10 (1), 18204. DOI: 10.1038/s41598-020-73931-2.
- Bobarykina A. A. “Zelenaya” energetika Omskoi oblasti [Green energy of the Omsk region]. Proceedings of the VII International science-to-practice conference “Safety of the urban environment”, Omsk, Omsk State Technical University, 2020, pp. 212–214. (In Russ.).
- Khalil A., Rajab Z., Amhammed M., Asheibi A. The benefits of the transition from fossil fuel to solar energy in Libya: A street lighting system case study. Applied Solar Energy (English translation of Geliotekhnika), 2017, vol. 53 (2), 138–151. DOI: 10.3103/S0003701X17020086.
- Esmaeil J., Manesh M. H. K., Mostafa D., Onishi V. C. Advanced exergy, exergoeconomic, and exergoenvironmental analyses of integrated solar-assisted gasification cycle for producing power and steam from heavy refinery fuels. Energies, 2021, vol. 14 (24), 8409. DOI: 10.3390/en14248409.
- Bolobov V., Martynenko Y. V., Voronov V., Latipov I., Popov G. Improvement of the Liquefied Natural Gas Vapor Utilization System Using a Gas Ejector. Inventions, 2022, vol. 7 (1), 14. DOI: 10.3390/inventions7010014.
- Yu G., Jia S., Geng Y. Numerical investigation into the two-phase convective heat transfer within the hold of an oil tanker subjected to a rolling motion. Journal of Marine Science and Engineering, 2019, vol. 7(4). DOI: 10.3390/jmse7040094.
- Yu P., Yin Y., Yue Q., Wu S. Experimental study of ship motion effect on pressurization and holding time of tank containers during marine transportation. Sustainability, 2022, vol. 14 (6). DOI: 10.3390/su14063595.
- Kulitsa M., Wood D. A Soft metal blanket with optional anti-sloshing conceptual designs to improve pressure control for floating and land-based liquefied natural gas tanks. Advances in Geo-Energy Research, 2019, vol. 3 (4), 424–447. DOI: 10.26804/ager.2019.04.09.
- Ravikumar A. P., Roda-Stuart D., Liu R., Bradley A., Bergerson J., Nie Y., Zhang S., Bi X., Brandt A. R. Repeated leak detection and repair surveys reduce methane emissions over scale of years. Environmental Research Letters, 2020, vol. 15 (3). DOI: 10.1088/1748-9326/ab6ae1.
- Song H., Ou X., Yuan J., Yu M. Wang C. Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in Сhina based on a bottom-up model analysis. Energy, 2017, vol. 140, pp. 966–978. DOI: 10.1016/j.energy.2017.09.011.
- Shell Sky scenario. Shell Global. Available at: https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenario-sky/could-society-reach-the-goals-of-the-paris-agreement/sustainable-aviation.html (accessed 05.10.2022).
- Kraan O., Kramer G. J., Haigh M., Laurens C. An Energy Transition That Relies Only on Technology Leads to a Bet on Solar Fuels. Joule, 2019, vol. 3 (10), pp. 2286–2290. DOI: 10.1016/j.joule.2019.07.029.
- Tanveer T., Dongdong Zh. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports, 2020, vol. 6, pp. 1973–1991. DOI: 10.1016/j.egyr.2020.07.020.
- Akaev A. A., Davydova O. I. A mathematical description of selected energy transition scenarios in the 21st century, intended to realize the main goals of the Paris climate agreement. Energies, 2021, vol. 14, no. 9, 2558. DOI: 10.3390/en14092558.
- Tcvetkov P., Cherepovitsyn A., Fedoseev S. Public perception of carbon capture and storage: A state-of-the-art overview. Heliyon, 2019, vol. 5 (12), e02845. DOI: 10.1016/j.heliyon.2019.e02845.
- Ulchenko M. V., Fedoseev S. V. Tendentsii razvitiia mirovogo rynka szhizhennogo prirodnogo gaza i perspektivy realizatsii rossiiskikh arkticheskikh proektov [Trends in the development of the global liquefied natural gas market and prospects for the implementation of Russian Arctic projects]. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2022, no. 4, pp. 40–57. (In Russ.). doi:10.37614/2220-802X.4.2022.78.003.
- Vasilev Y., Cherepovitsyn A., Tsvetkova A., Komendantova N. Promoting public awareness of carbon capture and storage technologies in the Russian federation: A system of educational activities. Energies, 2021, vol. 14 (5), 1408. DOI: 10.3390/en14051408.
- Cherepovitsyna, A.; Sheveleva, N.; Riadinskaia, A.; Danilin, K. Decarbonization Measures: A Real Effect or Just a Declaration? An Assessment of Oil and Gas Companies’ Progress towards Carbon Neutrality. Energies, 2023, 16, 3575. https://doi.org/10.3390/en16083575.
- Halim R. A., Kirstein L., Merk O., Martinez L. M. Decarbonization pathways for international maritime transport: A model-based policy impact assessment. Sustainability, 2018, vol. 10 (7), 2243. DOI: 10.3390/su10072243.
- Facilities — Global CCS Institute. Available at: https://co2re.co/FacilityData (accessed 06 February 2023).
- Strategiya sotsial’no-ekonomicheskogo razvitiya Rossiiskoi Federatsii s nizkim urovnem vybrosov parnikovykh gazov do 2050 goda [Strategy for socio-economic development of the Russian Federation with low greenhouse gas emissions until 2050]. (In Russ.). Available at: http://static.government.ru/media/files/ADKkCzp3fWO32e 2yA0BhtIpyzWfHaiUa.pdf (accessed 10 February 2023).
- Skufina T. P., Samarina V. P., Samarin A. V. Processy dekarbonizacii proizvodstva i perspektivy Arktiki kak uglerodno nejtral’noj territorii [Concerning processes of decarbonization of production and prospects for the Arctic as a carbon-neutral territory]. Ugol’ [Coal], 2022, vol. 6, pp. 54–58. (In Russ.). DOI: 10.18796/0041-5790-2022-6-54-58.
- NOVATEK proshel mezhdunarodnuyu sertifikatsiyu uchastkov na Yamale i Gydane dlya podzemnogo khraneniya uglekislogo gaza [NOVATEK passed the international certification of sites in Yamal and Gydan for the underground storage of carbon dioxide]. (In Russ.). Available at: https://www.novatek.ru/ru/press/releases/index.php?id_4=4861&ysclid= lehe4bmojb726223247 (accessed 31 January 2023).
- Elistratov V. V. Energosnabzhenie v Arktike s ispol’zovaniem VIE [Energy supply in the Arctic using renewable energy sources]. ru, 2023, no. 1 (133). (In Russ.).
- Na Novoportovskom mestorozhdenii zapushchena vetrosolnechnaya elektrostantsiya [Wind and solar power plant launched at the Novoportovskoye field]. (In Russ.). Available at: https://teknoblog.ru/2017/06/08/78927?ysclid= lehrjh3er1496289979 (accessed 16 January 2023).
- Makarova I., Gubacheva L., Makarov D., Buyvol P. Economic and environmental aspects of the development possibilities for the northern sea route. Transportation Research Procedia, 2021, vol. 57, pp. 347–355. DOI: 10.1016/j.trpro.2021.09.060.
- Sevmorput’ mozhet radikal’no snizit’ vybrosy parnikovykh gazov v Arktike [The Northern Sea Route can radically reduce greenhouse gas emissions in the Arctic]. (In Russ.). Available at: https://www.skolkovo.ru/expert-opinions/sevmorput-mozhet-radikalno-snizit-vybrosy-parnikovyh-gazov-v-arktike/ (accessed 12 February 2023).
- Logvina E., Matveeva, T., Bochkarev A., Semenova, A. A., Nazarova O. Analiz tekhnologicheskikh i tekhnicheskikh dostizhenii v oblasti izucheniya subakval’nykh gazovykh gidratov i vozmozhnost’ ikh primeneniya v arkticheskikh moryakh Rossii [Analysis of technological and technical advances in the study of subaqueous gas hydrates and the possibility of their application in the Arctic seas of Russia]. Arctic: Ecology and Economy, 2020, no. 4 (40), pp. 66–76. (In Russ.). DOI: 10.25283/2223-4594-2020-4-66-76.
- Giustiniani M., Tinivella U., Jakobsson M., Rebesco M. Arctic Ocean Gas Hydrate Stability in a Changing Climate. Journal of Geological Research, 2013, vol. 2013, 783969. DOI: 10.1155/2013/783969.