PROSPECTS FOR THE REVITALIZATION AND STRATEGIC DEVELOPMENT  OF THE RUSSIAN MICA INDUSTRY: A FOCUS ON THE ARCTIC

Original article

Download article

Aleksei E. Cherepovitsyn1, Kristina A. Strelchenko2

1-2Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia

1Cherepovitsуn_AE@pers.spmi.ru, ORCID 0000-0003-0472-026Х

2strelcenkok@gmail.com, ORCID 0009-0007-1838-3002

Abstract. This study examines the Russian mica market and assesses its potential for revitalization, a critical step toward ensuring the nation’s resource sovereignty. The research is motivated by the fact that several sectors of the national economy remain dependent on imported raw materials despite the country’s possessing major mica reserves. The goal of the study is to formulate a strategy for overcoming the industry’s challenges and to articulate a pathway for its strategic development by leveraging the resource potential of the Russian Arctic. To this end, this work provides a comprehensive analysis of the Russian mica industry’s current status, identifies its primary barriers to growth, and outlines promising directions for its revitalization. A central argument is the strategic importance of the Russian Arctic as a future resource base. The methodology incorporates analysis and generalization of statistical data, SWOT analysis, and Porter’s five forces analysis to deliver an objective assessment of the industry’s competitive environment and internal resources. The study’s novelty lies in its systematic classification of the factors constraining the domestic mica industry and its proposal of specific modernization measures. These include adopting advanced processing technologies, utilizing secondary anthropogenic resources, and developing new high-value-added products. The findings confirm that, despite substantial reserves of muscovite, phlogopite, lepidolite, and vermiculite, Russia’s import dependence persists due to technological backwardness and infrastructural deficits. The principal conclusion affirms the strategic potential of the country’s northern regions, whose deposits could form the basis for import substitution and stimulate high-tech economic sectors. These results provide a foundation for crafting national policy and investment stimulation programs aimed at revitalizing the mica industry.

Keywords: mica industry, mica market, resource sovereignty, strategic analysis, Arctic, import substitution

For citation: Cherepovitsyn A. E., Strelchenko K. A. Prospects for the revitalization and strategic development of the Russian mica industry: A focus on the Arctic. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and  the Market: Forming the Economic Order], 2025, no. 3, pp. 53–68. doi:10.37614/2220-802X.3.2025.89.004.

References

  1. Fedorova S. V. Sozdanie kompozita na osnove slyudy i stekla [Creation of the composite on the basis of mica and glass]. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta[Bulletin of the Kuzbass State Technical University], 2023, Vol. 156, no. 2, pp. 101–110. doi:10.26730/1999-4125-2023-2-101-110. (In Russ.).
  2. Bubnova T. P., Bukchina O. V. Muskovitovoe syr’e Karelii: istoriya dobychi i perspektivy ispol’zovaniya [Muscovite reserves of Karelia: History of mining and application prospects]. Gornyi zhurnal[Mining Journal], 2019, Vol. 622, no. 3, pp. 21–25. doi:10.17580/gzh.2019.03.04. (In Russ.).
  3. Perfilieva Yu. V. Osnovnye napravleniya ispol’zovaniya slyudy i perspektivy razvitiya eksporta slyudy v Rossiiskoi Federatsii [Main directions of mica use and prospects for mica export development in the Russian Federation]. Vestnik IrGTU [Bulletin of Irkutsk State Technical University], 2006, Vol. 28, no. 4, pp. 70–72. (In Russ.).
  4. Shishelova T. I., Zhitov V. G. Sovremennoe sostoyanie slyudyanoi oblasti. Problemy i perspektivy [The current state of the mica industry: Problems and prospects]. Uspekhi sovremennogo estestvoznaniya [Advances in Current Natural Sciences], 2018, no. 3, pp. 133–139. (In Russ.).
  5. Shishelova T., Zhitov V. Radiation-resistant materials based on mica in the construction industry. MATEC Web of Conferences, 2018, Vol. 212, pp. 1–6. doi:10.1051/matecconf/201821201012.
  6. Marinina O. A., Ilyushin Yu. V., Kildiushov E. V. Comprehensive analysis and forecasting of indicators of sustainable development of nuclear industry enterprises. International Journal of Engineering, Transactions B: Applications, 2025, Vol. 38, no. 11, pp. 2527–2536. doi:10.5829/ije.2025.38.11b.05.
  7. Semenova T., Sokolov I. Theoretical substantiation of risk assessment directions in the development of fields with hard-to-recover hydrocarbon reserves. Resources, 2025, Vol. 14, no. 4, 64. doi:10.3390/resources14040064.
  8. Zhukovskiy Y., Tsvetkov P., Koshenkova A., Skvortsov I., Andreeva I., Vorobeva V. A methodology for forecasting the KPIs of a region’s development: Case of the Russian Arctic. Sustainability, 2024, Vol. 16, no. 15, pp. 1–25. doi:10.3390/su16156597.
  9. Dmitrieva D., Chanysheva A., Solovyova V. A conceptual model for the sustainable development of the Arctic’s mineral resources considering current global trends: Future scenarios, key actors, and recommendations. Resources, 2023, Vol. 12, no. 6. doi:10.3390/resources12060063.
  10. Malov N. D., Shchiptsov V. V. Krizis slyudyanoi otrasli Belomorskoi pegmatitovoi provintsii i perspektiva ego preodoleniya [Crisis in mica production industry of the Belomorskaya pegmatite province and perspective of its overcoming]. Zapiski Gornogo instituta [Journal of Mining Institute], 2016, Vol. 218, pp. 172–178. (In Russ.).
  11. Andraschek N., Wanner A. J., Ebner C., Riess G. Mica/epoxy-composites in the electrical industry: Applications, composites for insulation, and investigations on failure mechanisms for prospective optimizations. Polymers, 2016, Vol. 8. doi:10.3390/polym8050201.
  12. Wargala E., Sławska M., Zalewska A., Toporowska M. Health effects of dyes, minerals, and vitamins used in cosmetics. Women, 2021, Vol. 1, no. 4, pp. 223–237. doi:10.3390/women1040020.
  13. Demeusy B., Arias-Quintero C. A., Butin G., Lainé J., Tripathy S. K., Marin J., Dehaine Q., Filippov L. O. Characterization and liberation study of the Beauvoir granite for lithium mica recovery. Minerals, 2023, Vol. 13, no. 7, рр. 950. doi:10.3390/min13070950.
  14. Sheth R. P., Ranawat N. S., Chakraborty A., Mishra R. P., Khandelwal M. The lithium-ion battery recycling process from a circular economy perspective—A review and future directions. Energies, 2023, Vol. 16, no. 7, рр. 3228. doi:10.3390/en16073228.
  15. Morozova L. N., Zozulya D. R., Skublov S. G. Kol’skii redkometall’nyi pegmatitovyi poyas — vazhneishii istochnik strategicheskogo mineral’nogo syr’ya (Li, Be, Nb, Ta, Cs) v Rossii [Kola rare-metal pegmatite belt — the most important source of strategic mineral raw materials (Li, Be, Nb, Ta, Cs) in Russia]. Razvedka i okhrana nedr [Prospect and protection of mineral resources], 2024, no. 2, pp. 36–40. doi:10.53085/0034-026X_2024_2_36. (In Russ.).
  16. Shchiptsov V. V., Burtsev I. N., Zhirov D. V., Voloshin A. V., Mashin D. O. Promyshlennye mineraly severa evropeiskoi chasti Rossii [Industrial minerals of North European Russia]. Trudy Karel’skogo nauchnogo tsentra RAN [Proceedings of the Karelian Research Centre of the Russian Academy of Sciences], 2020, no. 6, pp. 7–35. doi:10.17076/them1267. (In Russ.).
  17. Korsakova M. A., Ivanov N. M., Dudareva G. A. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1:200 000. Seriya Karel’skaya. List Q–36–XV, XVI (Loukhi). Ob”yasnitel’naya zapiska [National geological map of the Russian Federation. Scale 1:200,000. Karelian series. Sheet Q–36–XV, XVI (Loukhi). Explanatory note]. Moscow, VSEGEI, 2021.
  18. Shchiptsov V. V., Ivashchenko V. I. Mineral’no-syr’evoi potentsial arkticheskikh raionov Respubliki Kareliya [Mineral potential of Arctic Karelia]. Trudy Karel’skogo nauchnogo tsentra RAN [Proceedings of the Karelian Research Centre of the Russian Academy of Sciences], 2018, no. 2, pp. 3–33. doi:10.17076/geo775. (In Russ.).
  19. Alekseev V. I., Alekseev I. V. Zircon as a mineral indicating the stage of granitoid magmatism at Northern Chukotka, Russia. Geosciences, 2020, Vol. 10, no. 5. doi:10.3390/geosciences10050194.
  20. Hall A. M., Barfod D. N., Gilg H. A., Stuart F. M., Sarala P., Al-Ani T. Intensive chemical weathering in the Arctic during the Miocene Climatic Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, Vol. 634, рр. doi:10.1016/j.palaeo.2023.111927.
  21. Isakov A. E., Matveeva V. A. Issledovanie ochistki marganetssoderzhashhikh stochnykh vod OAO ″Kovdorskij GOK” [ОАО ″Kovdorsky MCC” manganese-containing waste water purification study]. Obogashchenie rud [Ore processing], 2016, no. 2, pp. 44–48. doi:10.17580/or.2016.02.08. (In Russ.).
  22. Levashova E. V., Zozulya D. R., Morozova L. N., Skublov S. G., Serov P. A. Zircon as an indicator of magmatic-hydrothermal transition in the evolution of rare metal pegmatite (using the example of the Kolmozero and Polmostundra lithium deposits, Kola Peninsula, Russia). Russian Geology and Geophysics, 2024, Vol. 65, no. 11, pp. 1316–1333. doi:10.2113/RGG20244758.
  23. Yuan J., Yang J., Ma H., Su S., Chang Q., Komarneni S. Green synthesis of nano-muscovite and niter from feldspar through accelerated geomimicking process. Applied Clay Science, 2018, Vol. 165, pp. 71–76. doi:10.1016/j.clay.2018.08.007.
  24. Gerasimova L. G., Maslova M. V., Shchukina E. S. Mineral layer fillers for the production of functional materials. Materials, 2021, Vol. 14, no. 12, рр. 3369. doi:10.3390/ma14123369.
  25. Krasnova N. I. The Kovdor phlogopite deposit, Kola Peninsula, Russia. The Canadian Mineralogist, 2001, Vol. 39, no. 1, pp. 33–44. doi:10.2113/gscanmin.39.1.33.
  26. Eom Y., Dyer L., Nikoloski A.N., Alorro R. D. Mechanochemical Treatment for the extraction of lithium from hard rock minerals: A comprehensive review. Metals, 2024, Vol. 14, no. 11, рр. 1260. doi:10.3390/met14111260.
  27. Lahchich A., Álvarez-Lloret P., Leardini F., Marcos C. Heat treatment at 1000 °C under Reducing atmosphere of commercial vermiculites. Minerals, 2024, Vol. 14, no. 3, рр. 232. doi:10.3390/min14030232.
  28. Rama M., Eklund O., Fröjdö S., Smått J.-H., Lastusaari M., Laiho T. Characterization of altered mica from Sokli, Northern Finland. Clays and Clay Minerals, 2020, Vol. 67, no. 5, pp. 428–438. doi:10.1007/s42860-019-00041-0.
  29. Matveeva V., Danilov A., Pashkevich M. Treatment of multi-tonnage manganese-containing waste water using vermiculite. Journal of Ecological Engineering, 2018, Vol. 19, no. 1, pp. 156–162. doi:10.12911/22998993/79416.
  30. Shishelova T. I., Khramovskikh M. A. Istoriya razvitiya slyudyanoi otrasli v Irkutskoi oblasti [The history of the mica industry in the Irkutsk region]. Izvestiya Laboratorii drevnikh tekhnologii [Reports of the Laboratory of Ancient Technologies], 2022, Vol. 18, no. 2, pp. 143–154. doi:10.21285/2415-8739-2022-2-143-154. (In Russ.).
  31. Nevskaya M. A., Belyaev V. V., Pasternak S. N., Vinogradova V. V., Shagidulina D. I. Otsenka potentsial’nogo ushcherba pochvam ot avariinykh razlivov nefti i nefteproduktov na territorii Arkticheskogo regiona [Accidental oil spills in the Arctic: An assessment of potential soil damage]. Sever i rynok: formirovanie ekonomicheskogo poryadka [The Northand the Market: Forming the Economic Order], 2024, no. 3, pp. 107–122. doi:10.37614/2220-802X.3.2024.85.007. (In Russ.).
  32. Malayoglu U., Besun N. Development of nanosized mica particles from natural mica by sonication/organic intercalation method for pearlescent pigment. Minerals, 2020, Vol. 10, no. 6, рр. 572. doi:10.3390/min10060572.
  33. Gu M., Echtermeyer T. J. A graphene-mica-based photo-thermal actuator for small-scale soft robots. Small, 2024, Vol. 20, no. 28. doi:10.1002/smll.202311001.
  34. Guimarey M. J., Karunarathne S., Ratwani C., Viesca J. L., Battez A. H., Abdelkader A. 2D mica as a new additive for nanolubricants with high tribological performance. Tribology International, 2024, Vol. 200. doi:10.1016/j.triboint.2024.110075.
  35. Guaya D., Maza L., Angamarca A., Mendoza E., García L., Valderrama C., Cortina J. L. Fe3+/Mn2+ (oxy)hydroxide nanoparticles loaded onto muscovite/zeolite composites (powder, pellets and monoliths): Phosphate carriers from urban wastewater to soil. Nanomaterials, 2022, Vol. 12, no. 21, рр. 3848. doi:10.3390/nano12213848.