AN INNOVATIVE APPROACH TO CONSTRUCTING ELEVATED PIPELINES IN THE RUSSIAN ARCTIC

Original article

Download article  

Аrtur М. Batyrov1, Alexander A. Ilyinsky2, Anton А. Krasnikov3

1Yugorsky State University, Khanty-Mansiysk, Russia

2Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

3Empress Catherine II Saint Petersburg mining university, St. Petersburg, Russia

1batyrovartur@mail.ru, ORCID 0009-0006-9864-2475

2alex.ilinsky@bk.ru, ORCID 0000-0001-8220-2164

3anton.krasnikov.97@mail.ru, ORCID 0000-0003-3632-9345

 

Abstract. Frost heaving in the Russian Arctic causes damage to buildings and results in accidents along the linear sections of main oil and gas pipelines. Developing the oil and gas sector under these challenging climatic conditions through innovative technologies is a strategic priority for the government. Hydrocarbon transportation is central to the oil and gas industry, and the quality of the pipeline system directly affects transportation efficiency, reliability, and operational safety. This study investigates the interaction between pipeline support structures and frozen soils under frost heaving conditions. Maintaining the designed alignment of main pipelines in such conditions can be achieved through the development of specialized supports on permafrost soils. These supports, designed with optimized geometric parameters of the cutting edge, enable controlled penetration and management of heaving frozen soil. The scientific novelty of this research lies in the integrated approach, which combines the analysis of support structures with cutting elements and considers the coupled mechanical and physical processes inherent to soil dynamics. The study also identifies the optimal pipe support depending on the support arrangement. The primary objective is to substantiate the feasibility of implementing this new construction technology in the extreme Arctic climate. The study employs modeling methods to analyze the interaction between pipelines, support structures, and frozen soil. A comprehensive technical and economic assessment demonstrates that the proposed technology can significantly reduce pipeline accidents, lower operational costs, increase transportation reliability, and shorten the payback period for complex Arctic projects. The research aims to promote the adoption of this technology within Russian industry, ensuring safe, cost-effective pipeline operation under sanctions, while supporting import substitution and strengthening national technological sovereignty.

Keywords: elevated pipeline, support structure, frost heaving, innovative technology, technical and economic efficiency

For citation: Batyrov А. М., Ilyinsky A. A., Krasnikov A. А. An innovative approach to constructing elevated pipelines in the Russian Arctic. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2025,  no. 4, pp. 169–181. doi:10.37614/2220-802X.4.2025.90.011.

References

  1. Wong P. K. Thevaragavan M. Lateral deformation and stability of embankments supported on controlled modulus columns. International Conference on Ground Improvement & Ground Control. 2012, 1–6. DOI:10.3850/978-981-07-3559-3_02-0226.
  2. Ivanova M. V., Fedorova O. A. Vozmozhnosti transportirovki arkticheskoi nefti na NPZ Respubliki Bashkortostan [Possibilities of Arctic oil transportation to the refineries of the Republic of Bashkortostan]. Arktika i Sever [Arctic and North], 2023, No. 53, pp. 62–78. DOI: 37482/issn2221-2698.2023.53.62.
  3. Kazakova T. I. Otsenka tekhnogennogo vliyaniya na mnogoletnemerzlye grunty pri ekspluatatsii magistral’nykh gazoprovodov [Assessment of the anthropogenic impact on permafrost soils during the operation of main gas pipelines]. Novye tekhnologii v gazovoi otrasli: opyt i preemstvennost’: tezisy dokladov [New Technologies in the Gas Industry: Experience and Continuity: Conference Proceedings], 2022, p. 115. (In Russ.).
  4. Kudryavtsev A., Valtseva T. Y., Kazharsky A. V. et al. Structure foundations for permafrost soils. Khabarovsk, DVGUPS Publishing House, 2015, 43 p. (In Russ.).
  5. Nevskaya M. A., Belyaev V. V., Pasternak S. N., Vinogradova V. V., Shagidulina D. I. Otsenka potentsial’nogo ushcherba pochvam ot avariinykh razlivov nefti i nefteproduktov na territorii Arkticheskogo regiona [Accidental oil spills in the Arctic: An assessment of potential soil damage]. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2024, No. 3, pp. 107–122. (In Russ.). DOI: 10.37614/2220-802X.3.2024.85.007.
  6. Garris N. A., Poletaeva O. Y. Bakiev T. A. Problemy truboprovodnogo transporta uglevodorodov v usloviyakh merzloty i puti ikh resheniya [Problems of pipeline hydrocarbons in permafrost conditions and ways of their solution]. Transport i khranenie nefteproduktov i uglevodorodnogo syr’ya [Transport and Storage of Oil Products and Hydrocarbons], 2020, no. 3, pp. 64–67. (In Russ.). DOI: 10.24411/0131-4270-2020-10311.
  7. Garris N. A., Rusakov A. I. Uchet stepeni tekhnogennogo vozdeistviya podzemnykh truboprovodov na teploprovodnost’ vmeshchayushchikh merzlykh gruntov [The effect of underground pipeline technogenic impact on frozen soil thermal conductivity coefficient]. Neftegazovoe delo [Petroleum Engineering], 2020, Vol. 18, No. 6, pp. 99–106. (In Russ.). DOI: 10.17122/ngdelo-2020-6-99-106.
  8. He R. Permafrost and cold-region environmental problems of the oil product pipeline from Golmud to Lhasa on the Qinghai–Tibet Plateau and their mitigation. Cold Regions Science and Technology, 2014, Vol. 64, pp. 279–288. DOI: 1016/j.coldregions.2010.01.003.
  9. Shakeel M., Ng C. W. Settlement and load transfer mechanism of a pile group adjacent to a deep excavation in soft clay. Computers and Geotechnics, 2018, Vol. 96, pp. 55–72. DOI: 10.1016/j.compgeo.2017.10.010.
  10. Mahdavi H., Fatahi B., Khabbaz H., Vincent P., Kelly R. Comparison of coupled flow-deformation and drained analyses for road embankments on CMC improved ground. Procedia Engineering, 2016, 143, pp. 462–469. DOI: 10.1016/j.proeng.2016.06.058.
  11. Nguyen L. D., Fatahi B., Khabbaz H. A constitutive model for cemented clays capturing cementation degradation. International Journal of Plasticity, 2014, Vol. 56, pp. 1–18. DOI: 10.1016/J.IJPLAS.2014.01.007.
  12. Suebsuk J., Horpibulsuk S., Liu D. Modified structured cam clay: A generalised critical state model for destructured, naturally structured and artificially structured clays. Computers and Geotechnics, 2010, Vol. 37 (7), pp. 956–968. DOI: 10.1016/j.compgeo.2010.08.002.
  13. Method for protecting the bearing support structure of above-ground main pipeline from the impact of the forces of frosty heaving of soil: Patent No. RU2785329C1; filed September 20, 2022, issued December 6, 2022. (In Russ.).
  14. Shamilov Kh. Sh. Povyshenie ekspluatatsionnoi nadezhnosti podzemnykh magistral’nykh gazoprovodov v usloviyakh ostrovnogo rasprostraneniya merzlykh gruntov: dis. kand. tech. nauk [Improving the operational reliability of underground gas pipelines in the conditions of insular permafrost. A PhD thesis (Engineering)]. Ufa, 2022, 129 p. (In Russ.).
  15. Shamilov Kh. Sh., Karimov R. M., Gumerov A. K., Valeev A. R., Tashbulatov R. R. [Optimization of design solutions for main pipeline projects in conditions of island and intermittent permafrost]. Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov [Science & Technologies: Oil and Oil Products Pipeline Transportation], 2021, No. 11 (2), 136–144. DOI: 10.28999/2541-9595-2021-11-2-136-144.
  16. Huang L., Sheng Y., Chen L., Peng E., Huang X., Zhang X. Sensitivity analysis of pipe–soil interaction influencing factors under frost heaving. Atmosphere, 2023, No. 14 (3), pp. 1–19. DOI: 10.3390/atmos14030469.
  17. Batyrov A. M. Razrabotka opornykh konstruktsii nadzemnykh magistral’nykh truboprovodov, snizhayushchikh vliyanie moroznogo pucheniya grunta: dis. kand. tech. nauk [Development of support structures for aboveground trunk pipelines that reduce the impact of ground frost heave. A PhD thesis (Engineering)]. Saint Petersburg, 2024, 128 p. (In Russ.).
  18. Shammazov I. A., Batyrov A. M., Sidorkin D. I., Van Nguyen T. Study of the effect of cutting frozen soils on the supports of above-ground trunk pipelines. Applied Sciences, 2023, Vol. 13 (5), pp. 1–18. DOI: 10.3390/app13053139.
  19. Tsytovich N. A. Mekhanika merzlykh gruntov [Permafrost mechanics]. Moscow, LIBROKOM, 2010, 448 p. (In Russ.).
  20. SP 25.13330.2020. Svod pravil. Osnovaniya i fundamenty na vechnomerzlykh gruntakh [SP 25.13330.2020. Soil bases and foundations on permafrost soils]. Moscow, Ministry of Construction, 2020, 141 p. (In Russ.).
  21. Andersland O. B., Ladanyi B. Frozen ground engineering. Wiley, 2003, p. 384.
  22. Vyalov S. S. Rheology of frozen soils. Moscow, Stroyizdat, 2000, 464 p. (In Russ.).
  23. Khrustalev L. N., Cherbunina M. Yu. Metodika otsenki nadezhnosti magistral’nykh truboprovodov [Methods of estimation of the reliability of oil-trunk pipelines]. Kriosfera Zemli [Earth’s Cryosphere], 2010, pp. 69–76. (In Russ.).
  24. Rudachenko A. V., Baykin S. S. Ekspluatatsionnaya nadezhnost’ truboprovodnykh sistem [Operational reliability of pipeline systems]. Tomsk, Tomsk Polytechnic University Publishing House, 2008, pp. 54–55. (In Russ.).
  25. Serbin D. V., Buslaev G. V., Lavrik A. Yu., Kadochnikov V. G., Dmitriev A. N. Issledovanie vzaimodeistviya zalivochnoi zhidkosti i ozernoi vody pri vskrytii podlednikovogo ozera Vostok v Antarktide [Study of the interaction between the drilling fluid and lake water during the opening of the subglacial Lake Vostok in Antarctica]. Zapiski Gornogo instituta [Journal of Mining Institute], 2025, Vol. 273, pp. 136–146. EDN NLWJEQ. (In Russ.).
  26. Ermakov B. S., Ermakov S. B., Vologzhanina S. A., Khuznakhmetov R. M. Vzaimosvyaz’ mezhdu usloviyami ekspluatatsii i poyavleniem nano- i ul’tradispersnykh defektov granits zeren v svarnykh soedineniyakh [Relationship between operating conditions and the emergence of nano- and ultradispersed grain boundary defects in weld joints]. Tsvetnye metally [Non-ferrous Metals], 2023, No. 8, pp. 80–85. doi: 10.17580/tsm.2023.08.13. (In Russ.).
  27. Postanovlenie Pravitel’stva RF ot 22 noyabrya 1997 g. № 1470 “Ob utverzhdenii Poryadka predostavleniya gosudarstvennykh garantii na konkursnoi osnove za schet sredstv Byudzheta razvitiya Rossiiskoi Federatsii i Polozheniya ob otsenke effektivnosti investitsionnykh proektov” [Resolution of the Government of the Russian Federation of November 22, 1997, No. 1470. (In Russ.).
  28. The key rate of the Bank of Russia. Available at: https://www.cbr.ru/hd_base/keyrate/ (accessed March 25, 2025).
  29. The key rate of the Bank of Russia and inflation. Available at: https://www.cbr.ru/hd_base/infl/#:~:text (accessed March 25, 2025).
  30. V Yakutii na nefteprovode VSTO proizoshel razliv nefteproduktov [In Yakutia, a spill of petroleum products occurred on the ESPO oil pipeline]. (In Russ.). Available at: https://newdaynews.ru/fareast / 266225.html (accessed March 25, 2025).
  31. Nachalos’ rassledovanie prichin vzryva na gazoprovode “Urengoi — Petrovsk” (Permskaya oblast’) [An investigation has begun into the causes of the explosion on the Urengoy–Petrovsk gas pipeline (Perm region)]. (In Russ.). Available at: https://regnum.ru/news/170120?ysclid=m8sjizly2j803667149 (accessed March 25, 2025).
  32. Edinye normy i rastsenki na stroitel’nye, montazhnye i remontno-stroitel’nye raboty: Sbornik E5-22 [Uniform norms and prices for construction, installation and repair and construction work: Collection E5-22]. Moscow, ENiR. (In Russ.).
  33. RD 39-00147105-006-97. Instruktsiya po rekul’tivatsii zemel’, narushennykh i zagryaznennykh pri avariinom i kapital’nom remonte magistral’nykh nefteprovodov [RD 39-00147105-006-97. Instructions for the reclamation of lands disturbed and polluted during emergency and major repairs of main oil pipelines]. Ufa, IPTER, 1997, 160 p. (In Russ.).
  34. RD 153-39.4-114.01. Pravila likvidatsii avarii i povrezhdenii na magistral’nykh nefteprovodakh [RD 153-39.4-114.01. Rules for the elimination of accidents and damages on main oil pipelines]. Moscow, Ministry of Energy, 2001, 115 p. (In Russ.).
  35. RD 51-4.2.-003-97. Metodicheskie rekomendatsii po raschetam konstruktivnoi nadezhnosti magistral’nykh gazoprovodov [RD 51-4.2.-003-97. Methodological recommendations on calculations of structural reliability of main gas pipelines]. Moscow, RAO Gazprom, 1997, 90 p. (In Russ.).