Original article
Аnna R. Nechitailo1, Oksana A. Marinina2
1, 2St. Petersburg Mining University, Saint Petersburg
1ar_nech@mail.ru ORCID: 0000-0002-5279-4178
2Marinina_OA@pers.spmi.ru ORCID: 0000-0002-7950-197X
Abstract. The article considers modern technological directions for the electrification of hydrocarbon production facilities in the poorly developed or hard-to-reach territories of the Arctic, the Far North or offshore fields, due to the remoteness of the Arctic and Far Eastern regions from existing large energy hubs, which makes it practically impossible to use a unified energy system of RF (UES RF) as the main source of electricity for needs of the oil and gas industry. The conditions of the UES RF using necessitates the additional generation sources for oil and gas companies and the solution of related issues of economic and environmental efficiency of technological projects for the electrification of hydrocarbon production facilities in hard-to-reach and poorly developed territories. The study performed a cluster analysis of literary sources in order to determine the current trends in the electrification and power supply of the oil and gas industry. An assessment of the conditions for the application of modern technological directions for the electrification of hydrocarbon production facilities in the poorly developed and hard-to-reach territories of Russia is presented. The system analysis covers electrification options using gas-fired generators; based on the integration of renewable energy sources and their combination with traditional types of electricity supply; using complexes of unified energy networks for several offshore production facilities and additional energy centers. The study of technological directions for the electrification of hydrocarbon production facilities in poorly developed territories is the basis for further practical application of the results of the analysis in the field of pre-project planning and evaluation of proposed technological solutions based on the rational choice of a power source for remote fields, taking into account the optimal composition of equipment and the location of elements of power supply systems, construction schedule and indicators of the cost of construction and operation of energy supply systems.
Keywords: electrification, energy supply, hydrocarbon production, poorly developed territories, hard-to-reach territories, integration of renewable energy sources, use of associated petroleum gas, the Arctic
For citation: Nechitailo А. R., Marinina O. A. Analysis of technological directions of electrification of hydrocarbon production facilities in poorly developed territories. Sever i rynok: formirovanie ekonomicheskogo poryadka [The North and the Market: Forming the Economic Order], 2022, no. 2, pp. 45–57. doi:10.37614/2220-802X.2.2022.76.004
References
- Abraham-Dukuma M. Energy Efficiency, Corporate Shift and Energy Choices: Triple Policy Tools for Emissions Reduction, Int. Energy Law Rev., 2020, 7–12. https://doi.org/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-566
- Engen T., Ole A.; Simensen, Erlend Osland; Thune, The evolving sectoral innovation system for upstream oil and gas in Norway, in: O. Thune, Taran; Engen, Ole Andreas; Wicken (Ed.), Pet. Ind. Transform. Lessons from Norw. Beyond, Routledge, 2019, pp. 23.
- Abraham-Dukuma M. Sovereignty, trade, and legislation: The evolution of energy law in a changing climate, Energy Res. Soc. Sci. 59, 2020, 101305. https://doi.org/10.1016/j.erss.2019.101305
- Sullivan R. Corporate responses to climate change: Achieving emissions reductions through regulation, self-regulation and economic incentives, Routledge, 2018. https://doi.org/10.4324/9781351280006
- Mullahmetova L. I., Cherkasova, E. I. Poputnyj neftyanoj gaz: podgotovka, transportirovka i pererabotka. [Associated petroleum gas: preparation, transportation and processing] Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of Kazan Technological University], 2015, vol.18, no. 19, pp. 83–90. (In Russ.).
- Morenov V. A. Povyshenie effektivnosti energosnabzheniya ob”ektov neftegazopromyslov s ispol’zovaniem poputnogo neftyanogo gaza v kachestve energonositelya. Avtoref. diss. kand. tekhn. nauk [Improving the efficiency of energy supply to oil and gas fields using associated petroleum gas as an energy carrier. Abstract of the dissertation]. Saint Petersburg, Sankt-Peterburgskij gornyj universitet, 2016, 22 p.
- Leusheva E. L., Morenov V. A., Martel A. S. Combined cooling heat and power supplying scheme for oil and gas fields development. Paper presented at the Youth Technical Sessions Proceedings –– Proceedings of the 6th Youth Forum of the World Petroleum Council –– Future Leaders Forum, 2019, 382–386. DOI: 10.1201/9780429327070-53
- Rasporyazhenie Pravitel’stva RF ot 09.06.2020 No. 1523-r “Ob utverzhdenii Energeticheskoj strategii Rossijskoj Federacii na period do 2035 goda” [Decree of the Government of the Russian Federation No. 1523-r dated 09.06.2020 “On Approval of the Energy Strategy of the Russian Federation for the period up to 2035”]. (In Russ.). Available at: http://www.consultant.ru (accessed: 28.05.2022).
- Abramovich B. N., Bogdanov I. A. Povyshenie effektivnosti avtonomnyh elektrotekhnicheskih kompleksov neftegazovyh predpriyatij [Improving the efficiency of autonomous electrical complexes of oil and gas enterprises]. Zapiski Gornogo instituta [Journal of Mining Institute], 2021, vol. 249, pp. 408-416. DOI: 10.31897/PMI.2021.3.10 (In Russ.).
- Stroykov G., Cherepovitsyn A. Y., Iamshchikova E. A. Powering multiple gas condensate wells in Russia’s Аrctic: Power supply systems based on renewable energy sources. Resources, 2020, 9 (11), 1–15. DOI: 10.3390/resources9110130
- Zimin R. Y., Kuchin V. N. Improving the efficiency of oil and gas field development through the use of alternative energy sources in the Аrctic. Paper presented at the 2020 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon, 2020. DOI: 10.1109/FarEastCon50210.2020.9271103
- Lazard’s Levelized Cost of Energy Analysis –– version 14.0, 2020. Available at: https://www.lazard.com/media/451419/ lazards-levelized-cost-of-energy-version-140.pdf
- Ostroukh A., Berner L., Karelina M., Kravchenko P., Evtiukov S. Intelligent control system for distributed gas transport facilities. Paper presented at the Transportation Research Procedia, 2021, 57, 376–384. DOI: 10.1016/j.trpro.2021.09.064
- Telemechanics Complex for GasWell Clusters, 2019. Available at: http://en.vympel.group/products/ telemechanics/kompleks-telemekhaniki-kustov-gazovykh-skvazhin/ (accessed: 06.04.2022).
- Abraham-Dukuma M. C., Dioha M. O., Aholu O. C., Emodi N. V., Ogbumgbada C., Isah A. A marriage of convenience or necessity? Research and policy implications for electrifying upstream petroleum production systems with renewables. Energy Research and Social Science, 2021, 80. DOI: 10.1016/j.erss.2021.102226
- Van Nguyen T., Voldsund M., Breuhaus P., Elmegaard B. Energy efficiency measures for offshore oil and gas platforms. Energy, 2016, 117:325. DOI: 10.1016/j. energy.2016.03.061
- Oliveira-Pinto S., Rosa-Santos P., Taveira-Pinto F. Assessment of the potential of combining wave and solar energy resources to power supply worldwide offshore oil and gas platforms. Energy Convers Manag Nov., 2020, 223, 113299. DOI: 10.1016/j.enconman.2020.113299/
- Offshore power generation with carbon capture and storage to decarbonise mainland electricity and offshore oil and gas installations: A techno-economic analysis, Roussanaly S., Aasena A., Anantharamana R., Danielsen B., Jakobsena J., Heme-De-Lacotte L., Neji G., Sødal A., Wahla P. E., Vranaa T. K., Dreux R. Applied Energy, volumes 233–234, 2019, pp. 478–494.
- Riboldi L., Cheng X., Farahmand H., Korpås M., Nord L. O. Effective concepts for supplying energy to a large offshore oil and gas area under different future scenarios. Chemical Engineering Transactions, 2017, 61, 1597–1602. DOI: 10.3303/CET1761264
- Santibanez-Borda E., Korre A., Nie Z., Durucan S. A multi-objective optimisation model to reduce greenhouse gas emissions and costs in offshore natural gas upstream chains. Journal of Cleaner Production, 2021, 297. DOI: 10.1016/j.jclepro.2021.126625
- North Sea Energy, “Unlocking potential of the North Sea”, Jun. 2020. Accessed: Feb. 05, 2022. Available at: https://north-sea-energy.eu/static/3e19bcb9aa57735fe1bbc423ca22d5e7/FINAL-North-Sea-Energy-Unlocking-potential-of-the-North-Sea-program-findings-2020.pdf
- Riboldi L., Völler S., Korpås. M and Lars O. An Integrated Assessment of the Environmental and Economic Impact of Offshore Oil Platform Electrification. Nord Energies, 2019, 12, 2114. DOI: 10.3390/en12112114
- Elgenedy M., Ahme, K., Burt G., Rogerson G., Jones G. Unlocking the UK continental shelf electrification potential for offshore oil and gas installations: A power grid architecture perspective. Energies, 2021, 14 (21). DOI: 10.3390/en14217096
- McKenna R., D’Andrea M., González M. G. Analysing long-term opportunities for offshore energy system integration in the danish north sea. Advances in Applied Energy, 2021, 4. DOI: 10.1016/j.adapen.2021.100067
- Offshore U. K. Оffshore sector should step up Net Zero efforts, Oil and Gas Authority says, Offshore, Available at: https://www.offshore-mag.com/regionalreports/article/14175428/uk-offshore-sector-should-step-up-net-zero-efforts-oiland-gas-authority-says (accessed: 17.12.2021).
- Kirsanova N. Y., Lenkovets O. M., Nikulina A. Y. Renewable energy sources (RES) as a factor determining the social and economic development of the arctic zone of the Russian Federation. Paper presented at the International Multidisciplinary Scientific Geo Conference Surveying Geology and Mining Ecology Management, SGEM, 2018, 18 (5.3), 679–686. DOI: 10.5593/sgem2018/5.3/S28.087
- Ivanov A. V., Skladchikov A. A., Hrennikov A. Yu. Razvitie elektroenergetiki arkticheskih regionov Rossijskoj Federacii s uchyotom ispol’zovaniya vozobnovlyaemyh istochnikov energii [Development of electric power industry in the Arctic regions of the Russian Federation taking into account the use of renewable energy sources]. Rossijskaya Arktika [Russian Arctic], 2021, no. 13. pp. 62–80. DOI: 10.24412/2658-4255- 2021-2-62-80. (In Russ.).
- Galiullina L. I. Problemy i perspektivy kompleksnogo i effektivnogo ispol’zovaniya poputnogo neftyanogo gaza v Rossii [Problems and prospects of integrated and efficient use of associated petroleum gas in Russia]. Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of Kazan Technological University], 2013, vol. 16, no. 22, pp. 346–348. (In Russ.).
- Shmelev P. I. Ispol’zovanie poputnogo neftyanogo gaza: mirovoj opyt [Use of associated petroleum gas: world experience]. Sibirskaya neft [Siberian oil], 2018, no. 152 (6). (In Russ.). Available at: https://www.gazprom-neft.ru/press-center/sibneft-online (accessed: 06.04.2022).
- Gazeev M. H., Sil’vanskij A. A., Lenkova O. V., Ignatenko S. G. Possibilities for the use of alternative energy to reduce power supply costs at Far North fields. International Journal of Recent Technology and Engineering, 2019, 8 (2), 4445–4448. DOI: 10.35940/ijrte.B3346.078219
- Informacionnyj portal Klimaticheskogo Centra Rosgidrometa [Information portal of the Climate Center of Roshydromet]. (In Russ.). Available at: https://cc.voeikovmgo.ru/ru/ (accessed: 06.04.2022).
- D. “Vostok Ojl” mozhet stat’ glavnym potrebitelem vetroenergetiki [“Vostok Oil” may become the main consumer of wind energy], 2020, (In Russ.). Аvailable at: https://www.gazetazp.ru/ (accessed: 06.04.2022).
- Shevchenko A., Bahtina O. Rosneft’ ozhidaet kommercheskih predlozhenij ot kompanij iz Kitaya po VES dlya “Vostok Ojl” [Rosneft expects commercial proposals from companies from China on the WPP for “Vostok Oil”], 23 fev. 2022. (In Russ.). Аvailable at: https://neftegaz.ru/(accessed: 06.04.2022).
- Cherepovitsyn A. E., Tsvetkova A. Y., Komendantova N. Approaches to assessing the strategic sustainability of high-risk offshore oil and gas projects. J. Mar. Sci. Eng., 2020, 8, pp. 995–995. Available at: https://www.mdpi.com/2077-1312/8/12/995#cite
- Stroykov G. A., Vasilev Y. N., Zhukov O. V. Basic Principles (Indicators) for Assessing the Technical and Economic Potential of Developing Arctic Offshore Oil and Gas Fields. Journal of Marine Science and Engineering, 2021, 9, pp. 1400–1423. Available at: https://www.mdpi.com/2077-1312/9/12/1400